From Dysmorphology to Next-Generation Phenotyping

Karen W. Gripp, MD, FACMG

Chief, Division of Medical Genetics

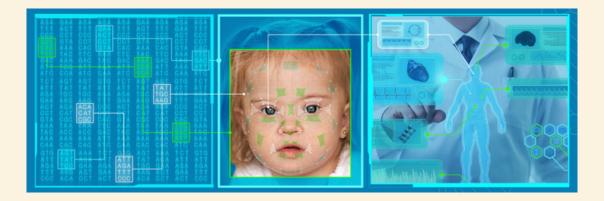
A.I. duPont Hospital for Children, Wilmington, DE

Professor of Pediatrics,

S. Kimmel Medical College; T. Jefferson University

Conflict of Interest

- Chief Medical Officer for FDNA, company providing Face2Gene app
 - Past: Travel reimbursement and consulting fee
 - Current: Stock options


Dr. Robert L. Brent, MD, PhD

- World renowned expert on embryonal and fetal radiation exposure
- National and international awards for contributions to the field
- Chairman, Department of Pediatrics at Nemours, Jefferson >30 years

Clinical Genetics: Integration of genetic and phenotypic information

Next-Generation Sequencing (NGS)

Next-Generation Phenotyping (NGP)

Image from FDNA

A new syndrome: Phenotypic delineation

Aust. paediat. J. (1977), 13: 114-118

A New Syndrome: Mental Subnormality and Nasal Papillomata

J. M. COSTELLO¹ Department of Paediatrics, University of Auckland

Costello, J. M. (1977). Aust. paediat. J., 13, 114-118. A New Syndrome: Mental subnormality and nasal papillomata. Two unrelated children with poor postnatal growth, mental subnormality, similar physical appearance and nasal papillomata present a syndrome for which no cause has been found.

FIGURE 1: Case 1, age 41 years. Curly hair, depressed nasal bridge, epicanthic folds.

FIGURE 3: Case 2, age 4 years. Curly hair, depressed nasal bridge, epicanthic folds.

EST. 1960 AS THE TERATOLOGY SOCIETY

FIGURE 2: Nasal papillomata. Case 1.

Aust. paediat. J. (1977), 13: 114-118

A New Syndrome: Mental Subnormality and Nasal Papillomata

J. M. COSTELLO¹ Department of Paediatrics, University of Auckland

Costello, J. M. (1977). Aust. paediat. J., 13, 114-118. A New Syndrome: Mental subnormality and nasal papillomata. Two unrelated children with poor postnatal growth, mental subnormality, similar physical appearance and nasal papillomata present a syndrome for which no cause has been found.

The author is not aware of any comparable cases reported either before or after these children were described at a meeting in 1971 (Costello, 1971). These children are, therefore, presented as a new syndrome of unknown cause.

TABLE I			
	Case 1	Case 2	
Gestation	38 weeks	36 weeks	
Hydramnios	+	-	
Birth weight	3800 gm	3430 gm	
Poor sucking	+	+	
Poor postnatal			
growth	+	+	
Large head	At birth (now normal)	Since 3½ years (approx)	
Short neck	+		
Curly hair		+++++++++++++++++++++++++++++++++++++++	
Low set ears	+++++++++++++++++++++++++++++++++++++++	 	
Large ear lobes	+	+	
Depressed nasal			
bridge	+	+	
Nasal papillomata	Since 6 ¹ / ₂ years	Since 2 years	
Strabismus		+	
Epicanthic folds	+ + - + +	+++++++++++++++++++++++++++++++++++++++	
Enamel dysplasia	-	+	
Thick lips	+	-	
Barrel chest	+	+	
Short flat hyper-		1.	
extendible fingers	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	
Thin nails	+	+	
Leg abnormalities	+	+	
Loose Integument			
hands and feet	+	+	
High arched palate	+ (at birth)	+ (at birth)	
Skin colour	Dark	Olive	
T		complexion	
Increased carrying			
angle elbow	+	-	
Mental Subnor-			
mality	+	+	

Costello syndrome

Der Kaloustian et al., Am J Med Genet 1991

- 3rd patient reported
- Named Costello syndrome
- Noted similarities to Noonan and cardio-facio-cutaneous (CFC)

TABLE II. Comparison of Findings in the Noonan, CFC, and Costello Syndromes

	Noonan	CFC	Costello
Poor suck	-	-	+
Poor postnatal growth	+	+	+
"Olive" or "dark" skin color	-	-	+
Ichthyosis	-	+	_
Loose and redundant skin			
(hands and feet)	-	-	+
Hyperkeratotic palms and soles	-	-	+/-
Hyperkeratotic extensor surfaces	-	+	
Hyperextensible fingers	-	+	+
Relative or absolute			
macrocephaly at birth or later	_	+	+
Curly hair	+	+	+
Coarse facial features	-	+	+
Strabismus	+/-	+/-	+
Ptosis of eyelids	+	+	+
Epicanthic folds	+	+	+
Apparently low-set ears	+	+	+
Large ear lobes	+	+	+
Depressed nasal bridge	-	+	+
Nasal and perioral papillomata	-	-	+
Thick lips	-	-	+
High-arched palate	+	+	+
Micrognathia		+	+
Enamel dysplasia			+/-
Short neck	+	+/-	+
Webbed neck	+	+/-	-
Pectus excavatum	+	-	-
Pectus carinatum	+	-	+
Barrel chest	-	-	+/-
Heart murmur	+	+	+
Pulmonary stenosis or other			
congenital heart defect	+	+	-
Undescended testicle	+	+	+
Increased carrying angle	+	+	+
Leg abnormalities	+	+	+/-
Tight Achilles tendon	-	-	+
Skeletal abnormalities	+	+	-
Mental subnormality	+/-	+	+
Seizure disorder	+	+	_
Minor anomalies found in	-	-	
parents	+	-	_

Society for Birth Defects Research & Prevention

Costello syndrome

JM Costello, Am J Med Genet 1996: Costello syndrome: Update on the original cases and commentary

	Costello Syn (out of 16-		Noonan syndrome	CFC syndrome
	Cases	%		
Polyhydramnios	6	38	33% [A]	7/24 cases [B]
Postnatal growth deficiency	16	100	50% have height and 43% weight <3rd centile [A]	27/37 [B]
Poor suck/poor feeding	15	94	76% [A]	± [B]
Mental subnormality	16	100	Frequency not well defined. 11% attend special schools [A]	100% [G], 100%[B], 80%[D]
Happy sociable personality	9	56	Usually pleasant [C] Stubborn & irritable [I]	
Epicanthic folds	13*	81	39% [C]	12/14 [B]
Downslanting palpebral fissures	8	50	38% [C]	18/20 [B]
Strabismus	9	56	63% [A]	18/37? [D]
High-arched palate	8	50	51% [E]	16/17 [B] 47% [G]
Depressed nasal bridge	13(?14)	81	+ [A] but high bridge in teenager and adult [C]	20/21 [B]
Wide or long forehead	6	38	Often broad [C]	+ high forehead [F]
Loose skin apart from hands and feet	10	63	Webbing neck 23% [A] Excess nuchal skin 55% [H]	11/12 oedema/redundant skin [B]
Curly hair	13	81	29% [A]	100% sparse, thin, curly [G]
Sparse or short or thin hair	6	38	11% sparse [A]	+ sparse and curly [F]
Nails thin \pm deep set \pm other	11	69	"Dystrophic" nails [G]	7/18 Dysplastic [B]
Short neck	13	81	+ [A], [Ĝ]	
Foot defects	12	75	Talipes equino varus 12% [A]	
Elbow abnormalities	10	63	Cubitus valgus 67% [E]	Cubitus valgus 10% [G]
Cardiomyopathy	6	38	20% [A]	

Differential diagnosis

Noonan, Costello and Cardio-Facio-Cutaneous (CFC) syndrome

Patient images shown with signed consent

Costello syndrome: Further clinical delineation

Cardiac findings in 63% (N=94) Lin et al., 2002

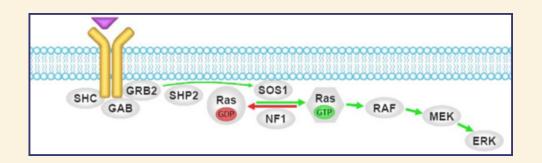
30% cardiovascular malformation (pulmonic valve stenosis)34% hypertrophic cardiomyopathy33% atrial tachycardia (chaotic or multifocal)

Tumor predisposition

Kerr et al. 1998: Embryonal rhabdomyosarcoma
Gripp et al. 2002: Increased risk for solid tumors (N=17)
Embryonal rhabdomyosarcoma; neuroblastoma; bladder cancer
Screening protocol

Kratz et al. 2011: confirmed 15% tumor risk by age 20 years

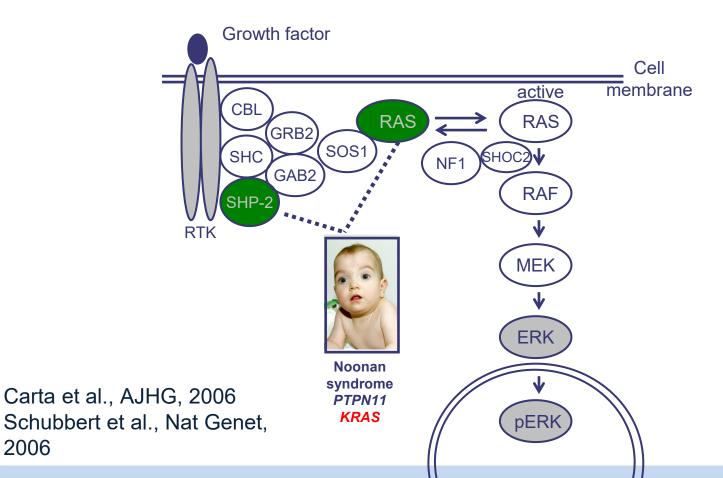
Cerebellar enlargement and Chiari 1 malformation


Gripp et al. 2010: 32% Chiari 1 malformation (N=28)

TERATOLOGY SOCIETY

Gene identification: Noonan syndrome

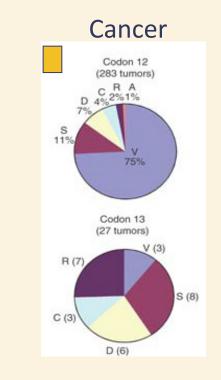
- Linkage to 12q22-qter by Jamieson et al., Nat Genet 1994.
- Heterogeneity noted
- *PTPN11* identified through positional candidate approach by Tartaglia et al., Nat Genet 2001.
- PTPN11 encodes SHP2, a protein tyrosine phosphatase critical for signal transduction pathways, including the mitogen activated protein kinase (RAS/MAPK) pathway.



FST 1960 AS THE

TERATOLOGY SOCIETY

Noonan syndrome: KRAS mutations


2006

Gene identification: Costello syndrome

Aoki et al., Nature Genetics 2005 *HRAS* missense mutations in 12/13 patients

- 10 altered Gly12 (7 Ser, 2 Ala, 1 Val)
- 2 Gly13Asp


Gene identification: CFC syndrome

Niihori et al., Nat Genet 2006; Rodriguez-Viciana et al., Science 2006

- Missense mutations in BRAF, MEK1 or MEK2
- RAS/MAPK pathway activation:

Shared mechanism for RASopathies

TERATOLOGY SOCIETY

RASopathies

- The RAS/MAPK pathway affects cell division and differentiation.
- Its primary role is likely for embryologic development.
- Early (germline) mutations affect embryologic development and results in syndromic condition.
 Secondary role as proto-oncogenes after somatic mutation.
- Delineation from clinical description to molecular cause ~ 30 years
- Numerous genes involved:
 - Testing requires next-generation sequencing approaches
 - Large gene panel or exome analysis

RAS/MAPK

Growth Differentiation

Next-generation sequencing and large databases

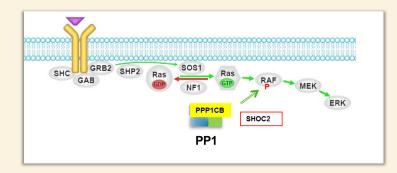
Patient 1: Short stature, cryptorchidism, Chiari 1 malformation, macrocephaly, distinctive facial features, slow growing curly hair, developmental delay.

No variant in known RASopathy genes.

 Exome analysis: de novo *PPP1CB* variant c.146G>C; p.Pro49Arg

Patient 2: Feeding difficulties, short stature, pectus excavatum, developmental delay. No variant in known RASopathy genes.

 Exome analysis: de novo PPP1CB variant c.166C>G; p.Ala56Pro



GeneMatcher.org

 Sobreira et al. Human Mut. 2015: GeneMatcher: A matching tool for connecting investigators with an interest in the same gene.

Novel syndrome delineation

- GeneMatcher: 2 additional cases, N=4
- Gripp et al. 2016, Am J Med Genet: Missense mutations in *PPP1CB* cause a RASopathy resembling Noonan syndrome with loose anagen hair.
- OMIM#617506
 Noonan syndrome with loose anagen hair 2 (NSLH2)

Noonan syndrome with loose anagen hair

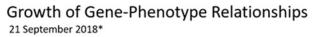
-			
	PPP1CB	SHOC2	
Short stature	9/15	28/31	
GH deficiency	2/2	14/17	
Macrocephaly (relative)	14/14	29/32	
Cardiac	PVS 2/15 ASD 2/15 VSD 2/15	PVS 10/29 Mitral/ tricuspid 8/24	
HCM	0/15	6/29	
Coarctation/ hypoplastic aortic arch	3/15	1 report	
Developmental delay	15/15	5/5	
Learning/ performance difficulties	At least 3/4	ADHD common	
Hyperpigmentation	4/5	23/31	
Slow growing hair	8/9	LAH	

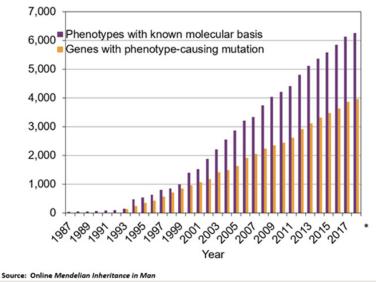
Computer technology in clinical genetics

Variant identification and analysis

- Next-generation sequencing technology
- Sequencing data analysis through algorithms
- Large databases: gnomAD; ClinVar
- In silico modeling of variant effects on protein product: Mutation Taster, REVEL score
- Matching databases: GeneMatcher

Phenotype analysis


- Human phenotype ontology (HPO) terms
- OMIM database



TERATOLOGY SOCIETY

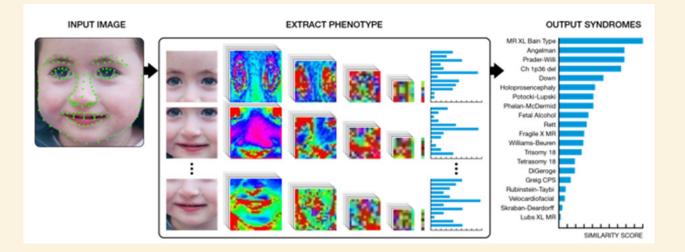
Next-generation phenotyping

- Next-generation sequencing enabled the identification of novel disease genes and syndromes
- Syndrome identification outpaced the clinical experts' ability to memorize them
- Syndrome recognition is limited by the clinician's individual experience and time
- Syndrome diagnosis is hampered by atypical or mild presentations



Next-generation phenotyping: DeepGestalt

DeepGestalt is the algorithm used in the Face2Gene app (Face2Gene.com)


- Unconstrained 2D images
- Deep convolutional neural network (DCNN) approach
- Trained on Casia-WebFace dataset for face recognition
- Fine-tuned to >300 syndromes through training on >17 000 validated patient images
- Community driven: Uploaded images are analyzed in a non-identifiable manner, data is used to further train syndrome recognition

Ø

DeepGestalt

- Face recognition, pre-processing
- 130 landmarks placed
- Cropped into predefined facial regions, analyzed through DCNN
- Aggregate results read out as syndrome similarity

DeepGestalt

Gurovich et al., Nature Medicine 2019: Identifying Facial Phenotypes of Genetic Disorders using Deep Learning.

Multiclass analysis

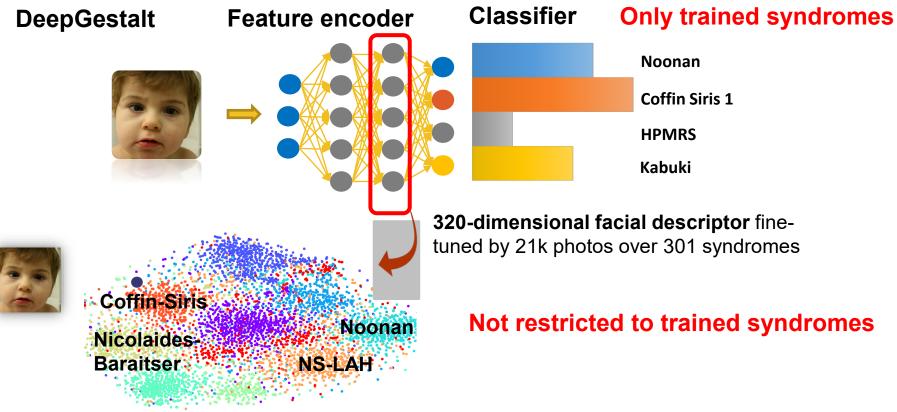
Training set: >200 syndromes, trained on >10,000 diagnosed images

Test set:

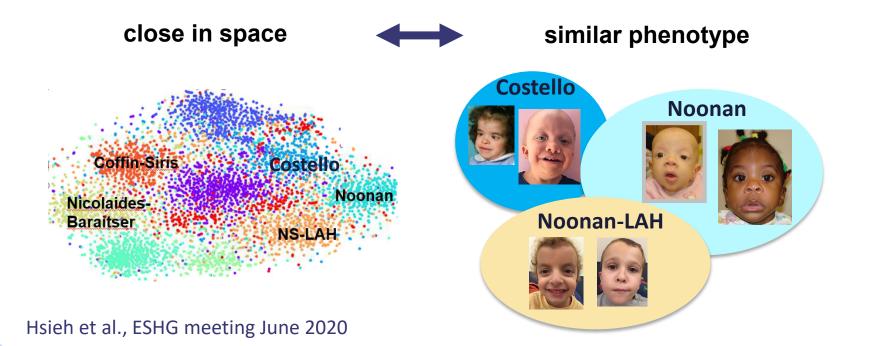
Clinical: 502 patient images of cases submitted and solved over time Published: 329 diagnosed patient images from London Medical Database

	Top 10 accuracy	Top 5 accuracy	Top 1 accuracy
Clinical test set	90.6%	85.4%	61.3%
	(CI 88%-93%)	(Cl 82.3%-88.4%)	(CF 57.2%-65.5%)
Publication test set	89.4%	83.2%	68.7%
	(CI 86%-92.7%)	(CI 79%-87.2%)	(Cl 63.52-73.55%)

DeepGestalt in clinic today

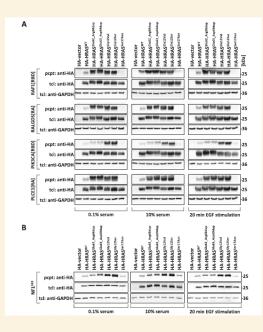

Next generation phenotyping through Face2Gene

- Facial photo taken in clinic
- Additional information provided ("short stature" or "intellectual disability")
- Image and terms analyzed immediately and matching syndromes suggested
- Targeted testing reduces cost, shortens diagnostic odyssey


From DeepGestalt to GestaltMatcher

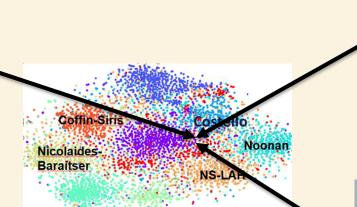
Hsieh et al., ESHG meeting June 2020

From DeepGestalt to GestaltMatcher


- Each patient represented by one dot
- The similarity between two patients is quantified by the cosine distance

An unusual presentation

Large for gestational age, macrocephaly Mild gross motor delay Slow growing hair, lentigines Seizure Chiari malformation, syrinx Hypertrophic cardiomyopathy HRAS c.186_206dup, p.(Glu62_Arg68dup)


Gripp et al. 2020, Eur J Hum Genet: The novel duplication HRAS c.186_206dup p.(Glu62_Arg68dup): Clinical and functional aspects

Future use of GestaltMatcher?

HRAS c.186_206dup, p.(Glu62_Arg68dup) Gripp et al. Eur J Hum Genet 2020

HRAS c.187_207dup, p.(Glu63_Asp69dup) Lorenz et al. Hum Mol Genet 2013



HRAS c.187_207dup, p.(Glu63_Asp69dup) Xu et al. Clin Exp Derm 2015

Conclusions

- Computer aided sequencing changed genetic testing
- Machine learning will change phenotype analysis
- Together, these technologies will support precision medicine

Acknowledgments

- Patients and families- who allowed me to learn so much!
- Collaborators- national and international- too many to name

Dr. Robert L. Brent, MD, PhD

Thank you!!!

Questions?

